skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Carrara, Alexandre"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. none (Ed.)
    Currently, our ability to interpret the mechanics of magma mingling and mixing is limited by an incomplete understanding of the modes of mixing across all melt fractions and compositions. Here, we present numerical simulations of the emplace- ment of crystal-free magma in crystal-rich reservoirs employing a computational fluid dynamics and discrete element method (CFD–DEM). We performed two runs corresponding to the emplacement of basalt into two end-member types of magmas mush (basaltic and dacitic). We found that the intruded volumes have similar shapes and are surrounded by a halo where the crys- tal volume fraction of the mush is lower. The dynamics of intruded melt are, however, different. Importantly, the mingling of the intruded and host materials starts after emplacement and consists in the incorporation of mush material into the intruded magma. Our findings imply that purely thermo-mechanical processes controlled by grain-scale dynamics are sufficient to explain fundamental aspects of recharge. 
    more » « less
  2. none (Ed.)
    SUMMARY The geophysical detection of magma bodies and the estimation of the dimensions, physical properties and the volume fraction of each phase composing the magma is required to improve the forecasting of volcanic hazards and to understand transcrustal magmatism. We develop an analytical model to calculate P waves velocity in a three-phase magma consisting of crystals and gas bubbles suspended in a viscous melt. We apply our model to calculate the speed of sound as a function of the temperature in three magmas with different chemical compositions, representative of the diversity that is encountered in arc magmatism. The model employs the coupled phase theory that explicitly accounts for the exchanges of momentum and heat between the phases. We show that the speed of sound varies nonlinearly with the frequency of an acoustic perturbation between two theoretical bounds. The dispersion of the sound in a magma results from the exchange of heat between the melt and the dispersed phases that affects the magnitude of their thermal expansions. The lower bound of the sound speed occurs at low frequencies for which all the constituents can be considered in thermal equilibrium, whereas the upper bound occurs at high frequencies for which the exchange of heat between the phases may be neglected. The presence of gas in a magma produces a sharp decrease in the velocity of compressional waves and generates conditions in which the dispersion of the sound is significant at the frequencies usually considered in geophysics. Finally, we compare the estimates of our model with the ones from published relationships. Differences are largest at higher frequencies and are <10 per cent for typical magma. 
    more » « less
  3. none (Ed.)
    Magmatic reservoirs located in the upper crust have been shown to result from the repeated intrusions of new magmas, and spend much of the time as a crystal-rich mush. The geometry of the intrusion of new magmas may greatly affect the thermal and compositional evolution of the reservoir. Despite advances in our understanding of the physical processes that may occur in a magmatic reservoir, the resulting architecture of the composite system remains poorly constrained. Here we performed numerical simulations coupling a computational fluid dynamics and a discrete element method in order to illuminate the geometry and emplacement dynamics of a new intrusion into mush and the relevant physical parameters controlling it. Our results show that the geometry of the intrusion is to first order controlled by the density contrast that exists between the melt phases of the intrusion and resident mush rather than the bulk density contrast as is usually assumed. When the intruded melt is denser than the host melt, the intrusion pounds at the base of the mush and emplaced as a horizontal layer. The occurrence of Rayleigh-Taylor instability leading to the rapid ascent of the intruded material through the mush was observed when the intruded melt was lighter than the host one and was also unrelated to the bulk density contrast. In the absence of density contrasts between the two melt phases, the intrusion may fluidize the host crystal network and slowly ascend through the mush. The effect of the viscosity contrast between the intruded and host materials was found to have a lesser importance on the architecture of intrusions in a mush. Analyzing the eruptive sequence of well documented eruptions involving an intrusion as the trigger shows a good agreement with our modeling results, highlighting the importance of specifically considering granular dynamics when evaluating magmas and mush physical processes. 
    more » « less